Question 1:
Solve the initial value problem.
4 dy / dx - 2y = xy5, y(1) = 3
4 dy / dx - 2y = xy5 --------------------------------(1)
P(x) = -2 , q(x) = x , n=5
Divide the equation (1) with y5
4y-5 dy/dx -2y-4 =x
Let suppose
w = y-4
dw / dx = -4 y-5 dy / dx ------------------------------------(2)
as we know from the original equation:
dy / dx = (xy5 + 2y) /4
putting the value of dy/dx in eq (2)
dw / dx = - y-5 (xy5 +2y)
dw / dx = - x - 2y-4
dw / dx = - x - 2w
dw / dx + 2w = -x
by taking integral factor
= e f (p(x)dx)
P(x) = 2
u(x) = e f 2dx = e2x
Multiply the whole equation with integrating factor
dw / dx e2x + 2w e2x = -x e2x
f d / dx (w e2x )= f -x e2x
we2x = f -x e2x
we2x = - (x e2x/2 - f e2x/2dx)
we2x = - (x e2x/2 - e2x/4 + c)
w = - x /2 + 1/4 - c e-2x
y-4 = - x /2 + 1/4 - c e-2x
(3)-4 = - 1 /2 + 1/4 - c e-2
1/81 = - 1 / 4 - c e-2
C =85e2 / 204
y-4 = - x /2 + 1/4 - 85e2 / 204 e-2x
y = ( - x /2 + 1/4 - 85e2 / 204 e-2x ) -1 / 4